14 research outputs found

    La Misión de oportunidad SMOS de la serie Earth Explorer. Radiometría por síntesis de apertura para la medida de la humedad del suelo y la salinidad del océano

    Get PDF
    Desde medi ados de los años 80, di versas Agencias Espaciales han prestado una atención a los ll amados radiómetros interferométricos por síntesis de apertura. Estos in strumentos ofrecen por primera vez un salto cuantitativo importante en resolución espac ial como para permitir monitorizar la superfi cie terrestre a frecuencias bajas de microondas (banda L). En esta banda de frecuencias (1.4 GHz) existe la máxima sensibilidad de la temperatura de brillo tanto a la humedad del terreno, como a la salinidad del océano. En los radiómetros clásicos, la resolución espacial viene dada por el ancho de haz de la antena que, al ser escaneada, forma la imagen de temperatura de brillo. Por ello, para alcanzar la resolución espacial deseada (30-50 km como máximo, 10-20 km ideal) 'desde un satélite en órbita baja, las antenas requeridas tienen unas dimensiones inaceptablemente grandes: entre 10 y 20 metros de diámetro. Durante los años 90, la Agencia Europea del Espacio (ESA) llevó a cabo una serie de estudios tecnológicos con vistas a desarrollar un radiómetro por síntesis de apertura bidimensional en banda L. A este proyecto se le llamó MIRAS (Microwave Imaging Radiometer by Aperture Synthesis). En Noviembre de 1998, la mi sión SMOS (Soil Moisture and Ocean Salinity) basada en el concepto derivado de los estudios del proyecto MIRAS, fue propuesta como respuesta a un anuncio de «Misiones de Oportunidad Earth Exploren) lanzado por la ESA [1). En Mayo de 1999, después de un proceso de selección de 27 propuestas, la ESA aprobó la mi sión SMOS en segundo lugar para una fase A extendida. Este artículo describe brevemente la moti vación de esta misión , los principios de funcionamiento de dicho in strumento y las actividades en las que ha participado y participa un grupo de profesores del Departament de Teoria del Senyal i Comunicacions, de la Universitat Politecnica de Catalunya.Peer Reviewe

    De campañas de medidas a productos de salinidad: un tributo a las contribuciones de Jordi Font a la mision SMOS

    Get PDF
    This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre.Este artículo resume algunas de las actividades en las que Jordi Font, profesor de investigación y jefe del Departamento de Física y Tecnología Oceanográfica, del Institut de Ciències del Mar (CSIC) en Barcelona, ha estado desarrollando como co-Investigador Principal de la parte de la misión SMOS de la ESA, una misión Earth Explorer, desde la perspectiva del Remote Sensing Lab, de la Universitat Politècnica de Catalunya. Seguramente, estamos olvidando algunas de sus muchas contribuciones a la teledetección de la salinidad, pero esperamos que esta revisión dé una idea de la importancia de su trabajo. Este artículo se focaliza en los siguientes puntos: 1) las medidas de alta calidad de la constante dieléctrica del agua marina, 2) las campañas de medidas WISE y EuroSTARRS que ayudaron a la definición del modelo geofísico relacionando la temperatura de brillo con el estado del mar, 3) la campaña de medidas FROG 2003 que ayudó a entender la emisión de la espuma marina 4) presentación de las técnicas de GNSS-R para la mejora de la recuperación de la salinidad superficial 5) campañas para la caracterización del instrumento y 6) la implantación del centro de procesado operacional de niveles 3 y 4 en el SMOS Barcelona Expert Centre

    Polarimetric Emission of Rain Events: Simulation and Experimental Results at X-Band

    No full text
    Accurate models are used today for infrared and microwave satellite radiance simulations of the first two Stokes elements in the physical retrieval, data assimilation etc. of surface and atmospheric parameters. Although in the past a number of theoretical and experimental works have studied the polarimetric emission of some natural surfaces, specially the sea surface roughened by the wind (Windsat mission), very limited studies have been conducted on the polarimetric emission of rain cells or other natural surfaces. In this work, the polarimetric emission (four Stokes elements) of a rain cell is computed using the polarimetric radiative transfer equation assuming that raindrops are described by Pruppacher-Pitter shapes and that their size distribution follows the Laws-Parsons law. The Boundary Element Method (BEM) is used to compute the exact bistatic scattering coefficients for each raindrop shape and different canting angles. Numerical results are compared to the Rayleigh or Mie scattering coefficients, and to Oguchi’s ones, showing that above 1-2 mm raindrop size the exact formulation is required to model properly the scattering. Simulation results using BEM are then compared to the experimental data gathered with a X-band polarimetric radiometer. It is found that the depolarization of the radiation caused by the scattering of non-spherical raindrops induces a non-zero third Stokes parameter, and the differential phase of the scattering coefficients induces a non-zero fourth Stokes parameter

    Faraday Rotation Retrieval Using SMOS Radiometric Data

    No full text

    Correcting the FRA Systematic Error in VTEC Maps From SMOS Radiometric Data

    Get PDF
    The Faraday rotation (FR) is a nonnegligible effect at the L-band, which is the operation frequency of the Soil Moisture and Ocean Salinity (SMOS) mission. This effect introduces a rotation in the electromagnetic field polarization when propagating through the ionosphere that must be compensated. Recently, a methodology was developed in order to retrieve the vertical total electron content (VTEC) from SMOS radiometric data with the aim to better correct the FR effect [1] . In that work, systematic patterns in the retrieved FR angle (FRA) were detected. In this article, these systematic patterns are characterized and corrected to improve the quality of the retrieved VTEC maps. These maps can be then reused in the SMOS level 2 processor for the correction of the FRA in the mission. The impact of using the SMOS-derived VTEC maps instead of the VTEC data from global positioning system (GPS) measurements on the ocean brightness temperatures (TB) measurement has also been analyzed. Results of this analysis show that the usage of those maps allows a significant enhancement in the quality of the TB, which will lead to an improvement on salinity retrievalsWith the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    New radiometers: SMOS-a dual pol L-band 2D aperture synthesis radiometer

    No full text
    International audienceSince the mid 1980s, aperture synthesis interferometric radiometers have received increased attention to monitor the Earth at low microwave frequencies (L-band), where there is a maximum sensitivity to soil moisture and ocean salinity. At L-band, classic radiometers require large steerable antennas to meet the spatial resolution requirements (30-50 km at most, 10-20 km wished for), from a low polar orbit platform. During the 1990s, technological studies were conducted by the ESA with an eye to design a 2D synthetic aperture L-Band radiometer (the Microwave Imaging Radiometer by Aperture Synthesis project: MIRAS). In 1998, in answer to a call for Earth Explorer Opportunity Missions issued by ESA, the Soil Moisture and Ocean Salinity Mission proposal (SMOS), based upon a radiometer concept derived from the MIRAS studies, was submitted, In 1999, following a selection procedure, ESA approved the SMOS mission for an extended phase. This paper summarize part of the work carried out on the interferometric radiometry concept and the optimization of the instrument configuration

    Sea surface emissivity at L-band: results of the WInd and Salinity Experiments WISE 2000 and 2001 and Preliminary resuñts from FROG 2003.

    No full text
    Two field experiments named WISE (WInd and Salinity Experiment) were sponsored by the European Space Agency (ESA) to better understand the wind and sea state effects on the L-band brightness temperatures. They took place at the Casablanca oil rig located in the North Mediterranean Sea, 40 km off shore the Ebro river delta: WISE 2000 from November 25 to December 18, 2000, and continued during the January 9 to 16, 2001, and WISE 2001 from October 23 to November 22, 2001. During the spring of 2003, under Spanish National funds, a third field experiment named FROG (Foam, Rain, Oil slicks and GPS reflectometry) took place at the Ebro river delta, to measure the phenomena that were not completely understood during the WISE field experiments, mainly the effect of foam and rain. In order to achieve the objectives of the WISE field experiments the LAURA L-band fully polarimetric radiometer from the Technical University of Catalonia (UPC) was mounted on the Casablanca oil-rig at the 32 meters deck above the sea surface, pointing to the North and North-West, in the direction of the dominant winds. In this paper we present the results of the first study to determine the relationship between the brightness temperature and the sea state

    The WISE 2000 and 2001 Field Experiments in Support of the SMOS Mission:Sea Surface L-Band Brightness Temperature Observations and Their Application to Sea Surface Salinity Retrieval.

    Get PDF
    Soil Moisture and Ocean Salinity (SMOS) is an Earth Explorer Opportunity Mission from the European Space Agency with a launch date in 2007. Its goal is to produce global maps of soil moisture and ocean salinity variables for climatic studies using a new dual-polarization L-band (1400-1427 MHz) radiometer Microwave Imaging Radiometer by Aperture Synthesis (MIRAS). SMOS will have multiangular observation capability and can be optionally operated in full-polarimetric mode. At this frequency the sensitivity of the brightness temperature (T/sub B/) to the sea surface salinity (SSS) is low: 0.5 K/psu for a sea surface temperature (SST) of 20/spl deg/C, decreasing to 0.25 K/psu for a SST of 0/spl deg/C. Since other variables than SSS influence the T/sub B/ signal (sea surface temperature, surface roughness and foam), the accuracy of the SSS measurement will degrade unless these effects are properly accounted for. The main objective of the ESA-sponsored Wind and Salinity Experiment (WISE) field experiments has been the improvement of our understanding of the sea state effects on T/sub B/ at different incidence angles and polarizations. This understanding will help to develop and improve sea surface emissivity models to be used in the SMOS SSS retrieval algorithms. This paper summarizes the main results of the WISE field experiments on sea surface emissivity at L-band and its application to a performance study of multiangular sea surface salinity retrieval algorithms. The processing of the data reveals a sensitivity of T/sub B/ to wind speed extrapolated at nadir of /spl sim/0.23-0.25 K/(m/s), increasing at horizontal (H) polarization up to /spl sim/0.5 K/(m/s), and decreasing at vertical (V) polarization down to /spl sim/-0.2 K/(m/s) at 65/spl deg/ incidence angle. The sensitivity of T/sub B/ to significant wave height extrapolated to nadir is /spl sim/1 K/m, increasing at H-polarization up to /spl sim/1.5 K/m, and decreasing at V-polarization down to -0.5 K/m at 65/spl deg/. A modulation of the instantaneous brightness temperature T/sub B/(t) is found to be correlated with the measured sea surface slope spectra. Peaks in T/sub B/(t) are due to foam, which has allowed estimates of the foam brightness temperature and, taking into account the fractional foam coverage, the foam impact on the sea surface brightness temperature. It is suspected that a small azimuthal modulation /spl sim/0.2-0.3 K exists for low to moderate wind speeds. However, much larger values (4-5 K peak-to-peak) were registered during a strong storm, which could be due to increased foam. These sensitivities are satisfactorily compared to numerical models, and multiangular T/sub B/ data have been successfully used to retrieve sea surface salinity
    corecore